Supporting Student Learning Outside the Math Classroom

Presented by Srishta Chopra & Sasha Chernomurova Learning Strategists – Math Specialists Centennial College

OCMA 2017

- Overview of the Learning Strategist Math Specialist's role.
 - Why do students struggle? What can we do to help?

• Open dialogue about supporting students' success in math.

What does a Learning Strategist – Math Specialist do?

Workshops

Math advising

One-on-one appointments

Math community of practice

Learning Centre math services

Tutor training & development

LEARNIN

LEARNI

Students' approach to learning math.

Where is the disconnect?

1. Preconceived notions about math.

BIG IDEA ANATIONWIDE PLAN FOR NUMERACY

2. Lack of confidence and math anxiety.

3. Surface learning and poor study skills.

THINKWELL-LEARNWELL[™]DIAGRAM

Surface Approach to Learning

Deep Approach to Learning

Metacognitive Learning Goals	Bloom's Higher Order Thinking Skills	Corresponding Learning Outcomes	Outcome Valuation
To Identify or Define Information Students seek to answer some form of this what-based question: Can I list and/or define the key terms?	Remembering Students work to recall/recognize information, ideas, and principles in the approximate form in which they were learned.	Able to Recall or Duplicate Information Students will be able to reproduce information in similar form as the original source. Corresponds to tasks in which cues are embedded.	THE UNIT OF A DEPARTMENT OF GREAT LEARNERS 5
To Explain Information Students seek to answer some form of this why-based question: Can I explain the reasoning behind the ideas/concepts?	Understanding Students work to explain and provide rationales to support concepts and/or principles.	Able to Provide Rationales for Information Students will be able to explain why concepts are essential to understanding the topic, subject, story, etc. Corresponds to tasks that require explanations or elaborations.	Deve data all de la annexes 10 10 10 10 10 10 10 10 10 10
To Apply Information to New Situations Students seek to answer some form of this how-based question: Can I apply this information to a new or different situation, problem or context?	Applying Students work to transfer principles and/or concepts to a different problem or task with minimal cues or direction.	Able to Apply Information to Different Situations Students will be able to use information to complete a problem or task with minimal direction or cues. Corresponds to tasks that require application of knowledge to a situation.	THE UNITED STATES OF GREAT LEARNERS
To Compare and Contrast Information Students seek to answer some form of this analytical question: Can I distinguish process- es, procedures or principles from seemingly identical processes, procedures or principles?	Analyzing Demands that students be able to distinguish and differentiate between comparable processes, functions, methods, etc.	Able to Discern Nuances of Information Students will be able to discern patterns, differences and similarities within information. Corresponds to tasks that require students to distinguish between similar sets of information, processes or outcomes.	CONTACT STATES OF GREAT LEARNERS
To Make Judgments About Information Students seek to answer some form of this evaluative question: Can I determine the best rationale, plan, solution, course of action, etc., given the information?	Evaluating Demands that students be able to make judgments with information.	Able to Reach Conclusions with Information Students will be able to make judgments about information they've analyzed. Corresponds to tasks that require students to decide which course of action, solution or option is best.	THE UNITED STATES OF GREAT LEARNERS
To Introduce, Develop a Viewpoint Students seek to answer some form of this generative question: Can I synthesize the information in an original way?	Creating Demands that students be able to construct new information from existing information.	Able to Produce New Information Students will be able to present new meaning or generate new knowledge. Corresponds to tasks that require students to produce authentic work.	CONTRACT AND
DON'T JUST STUDY, LEARNWELL!		Blog: www.thewelle	edu.com

4. Unable to make connections between math topics or to real life.

Equip students with the "tools" they need to learn math effectively.

Strong foundational knowledge of math content.

- Review previous content related to new content.

 Refer students to learning centre/tutoring services.

Promote selfregulated learning.

- Have clear learning outcomes.

- "I don't know, but my next step would be ..."

"...by losing the finer dexterity of my hands, I was forced to travel the universe in my mind, and try to visualize the ways in which it worked." ~Stephen Hawking

Spatial reasoning can involve

composing (physically or mentally combining shapes to make different shapes, such as two triangles joining to make a rectangle)

How can we promote visual spatial reasoning?

1. Spatial language:

Using words like rotation, translation, transformation or left, right, above, below. Words that visually describe space change or positioning.

2. Visual displays of data:

Diagrams, pictures, graphs to visually represent mathematical concepts or quantity.

3. Gestures:

Hand gestures or bodily gestures to depict mathematical concepts like rotation, transformation. Helps with patterning.

How can we promote visual spatial reasoning?

- 4. Manipulatives and technology.
- 5. Visual spatial reasoning prompts: "What can you see in your mind..."
- Playful opportunities to enhance this reasoning: Puzzles and games
 - 7. Visualizing in mind with pictures :
 Jo Boaler youcubed.org
 Example: 16 x 27 using mental math

✓ Work on communication skills.

Give opportunities for students to communicate their thinking in a variety of ways: spoken, written, visual.

Use reading comprehension strategies (e.g. paraphrasing, connecting to prior knowledge, visualizing.)

Focus on vocabulary of math.

✓ Improve critical thinking skills.

Give students an opportunity to assess their own learning.

Examples:

- Find error in a solution.
- Gauge reasonableness of an answer.
- Pick out the relevant information.

In conclusion:

Independent math learning requires many skills.

Students need opportunities to build or improve these skills.

□ UDL → how can we make math learning accessible?

